Tables 46 - 59

$$\begin{split} M_x = p \cdot I_x^2 / m_x \\ M_y = p \cdot I_x^2 / m_y \\ f_m = a \cdot p \cdot I_x^4 / (E \cdot h^3) \end{split}$$

pij= equivalent uniform load

ε=ly/lx	mx	my	100 a	ρxr	ρyr	uxr	uyr
1.00	27.2	27.2	4.87	0.34	0.34	0.25	0.25
1.05	24.5	27.5	5.36	0.35	0.35	0.26	0.25
1.10	22.4	27.9	5.84	0.36	0.35	0.27	0.25
1.15	20.7	28.4	6.31	0.37	0.35	0.28	0.25
1.20	19.1	29.1	6.78	0.38	0.36	0.29	0.25
1.25	17.8	29.9	7.28	0.39	0.36	0.3	0.25
1.30	16.8	30.9	7.67	0.4	0.36	0.31	0.25
1.35	15.8	31.8	8.09	0.41	0.36	0.31	0.25
1.40	15	32.8	8.5	0.42	0.37	0.32	0.25
1.45	14.3	33.8	8.9	0.42	0.37	0.33	0.25
1.50	13.7	34.7	9.27	0.43	0.37	0.33	0.25
1.60	12.7	36.1	9.97	0.44	0.37	0.34	0.25
1.70	11.9	37.3	10.6	0.45	0.37	0.35	0.25
1.80	11.3	38.5	11.18	0.46	0.37	0.36	0.25
1.90	10.8	39.4	11.69	0.46	0.37	0.37	0.25
2.00	10.4	40.3	12.15	0.47	0.37	0.38	0.25

$$\begin{split} M_x = p \cdot I_x^2 / m_x \\ M_y = p \cdot I_x^2 / m_y \\ M_{yerm} = -p \cdot I_x^2 / m_{yerm} \\ f_m = a \cdot p \cdot I_x^4 / (E \cdot h^3) \end{split}$$

pij= equivalent uniform load

$\epsilon = I_y / I_x$	m _x	m _y	m _{yerm}	100 a	ρ _{xr}	ρ _{yr}	ρ _{yerm}	U _{xr}	u _y r	U _{yerm}
1.00	41.20	29.40	11.90	3.34	0.29	0.32	0.58	0.18	0.23	0.40
1.05	36.50	29.00	11.30	3.78	0.30	0.33	0.60	0.19	0.24	0.41
1.10	31.90	28.80	10.90	4.22	0.31	0.33	0.61	0.20	0.24	0.42
1.15	28.30	28.80	10.40	4.67	0.32	0.34	0.63	0.21	0.24	0.42
1.20	25.90	28.90	10.10	5.12	0.33	0.34	0.64	0.22	0.25	0.43
1.25	23.40	29.20	9.80	5.57	0.34	0.34	0.65	0.23	0.25	0.43
1.30	21.70	29.70	9.60	6.02	0.35	0.35	0.66	0.24	0.25	0.43
1.35	20.10	30.20	9.30	6.45	0.36	0.35	0.67	0.25	0.25	0.43
1.40	18.80	30.80	9.20	6.89	0.37	0.35	0.68	0.26	0.25	0.43
1.45	17.50	31.60	9.00	7.31	0.38	0.36	0.69	0.27	0.25	0.43
1.50	16.60	32.30	8.90	7.73	0.39	0.36	0.69	0.27	0.25	0.43
1.60	15.00	33.60	8.70	8.52	0.41	0.36	0.70	0.29	0.25	0.43
1.70	13.80	34.90	8.50	9.26	0.42	0.36	0.71	0.30	0.25	0.43
1.80	12.80	36.20	8.40	9.94	0.43	0.37	0.72	0.31	0.25	0.43
1.90	12.00	37.50	8.30	10.56	0.44	0.37	0.72	0.32	0.25	0.43
2.00	11.40	38.80	8.20	11.12	0.45	0.37	0.73	0.33	0.25	0.43

Table 47-2 Two-way slab with one fixed edge and the rest simply supported

pij= equivalent uniform load

ε=l _y /l _x	m _x	m _{xerm}	m _y	100 a	ρ _{xr}	ρxerm	ρ _{yr}	Uxr	Uyr	Uxerm
1.00	31.40	11.90	41.20	3.34	0.32	0.58	0.29	0.23	0.40	0.18
1.05	29.20	11.30	43.20	3.57	0.32	0.59	0.29	0.24	0.41	0.18
1.10	27.30	10.90	45.10	3.80	0.33	0.60	0.29	0.24	0.42	0.18
1.15	25.80	10.50	47.10	4.01	0.33	0.61	0.29	0.25	0.43	0.18
1.20	24.50	10.20	48.80	4.20	0.34	0.61	0.29	0.25	0.44	0.18
1.25	23.40	9.90	50.30	4.38	0.35	0.62	0.29	0.26	0.45	0.18
1.30	22.40	9.70	51.80	4.55	0.35	0.62	0.29	0.26	0.46	0.18
1.35	21.60	9.40	53.20	4.72	0.35	0.63	0.29	0.27	0.46	0.18
1.40	21.00	9.30	54.30	4.85	0.36	0.63	0.29	0.27	0.47	0.18
1.45	20.30	9.10	55.00	4.98	0.36	0.63	0.29	0.27	0.47	0.18
1.50	19.80	9.00	55.60	5.10	0.36	0.63	0.29	0.28	0.48	0.18
1.60	19.00	8.80	56.80	5.31	0.37	0.64	0.29	0.28	0.49	0.18
1.70	18.30	8.60	57.80	5.49	0.37	0.64	0.29	0.29	0.50	0.18
1.80	17.80	8.40	58.60	5.62	0.37	0.64	0.28	0.29	0.50	0.18
1.90	17.40	8.30	59.00	5.75	0.38	0.64	0.28	0.30	0.51	0.18
2.00	17.10	8.30	59.20	5.85	0.38	0.64	0.28	0.30	0.52	0.18

Table 48-1 Two-way slab with two opposite fixed edges and the rest simply supported

pij= equivalent uniform load

$\epsilon = I_y / I_x$	m _x	m _y	m _{yerm}	100 a	ρ _{xr}	ρ _{yerm}	U _{xr}	U _{yerm}
1.00	63.30	35.10	14.30	2.30	0.25	0.52	0.14	0.36
1.05	52.20	33.70	13.40	2.66	0.26	0.54	0.15	0.37
1.10	46.10	32.90	12.70	3.03	0.27	0.56	0.16	0.37
1.15	39.80	32.20	12.00	3.43	0.28	0.58	0.17	0.38
1.20	35.50	31.70	11.50	3.83	0.30	0.59	0.17	0.39
1.25	31.50	31.30	11.10	4.25	0.31	0.61	0.18	0.40
1.30	28.50	31.20	10.70	4.67	0.32	0.62	0.19	0.41
1.35	25.80	31.20	10.30	5.10	0.33	0.64	0.20	0.41
1.40	23.70	31.40	10.00	5.53	0.34	0.65	0.20	0.42
1.45	22.00	31.70	9.75	5.96	0.35	0.66	0.21	0.42
1.50	20.40	32.10	9.50	6.39	0.36	0.67	0.22	0.42
1.60	17.90	33.30	9.20	7.22	0.38	0.69	0.23	0.43
1.70	16.00	34.90	8.90	8.02	0.40	0.70	0.25	0.43
1.80	14.60	37.10	8.70	8.78	0.41	0.71	0.26	0.43
1.90	13.40	39.70	8.50	9.49	0.42	0.71	0.27	0.43
2.00	12.50	42.40	8.40	10.13	0.43	0.72	0.28	0.43

Table 48-2 Two-way slab with two opposite fixed edges and the rest simply supported

pij= equivalent uniform load

ε=l _y /l _x	m _x	m _{xerm}	m _y	100 a	ρ _{xerm}	ρ _{yr}	U _{xerm}	U _{yr}
1.00	35.10	14.39	61.70	2.30	0.52	0.25	0.36	0.14
1.05	33.00	13.89	64.50	2.41	0.52	0.25	0.36	0.14
1.10	31.70	13.59	67.20	2.51	0.52	0.25	0.37	0.14
1.15	30.40	13.29	69.60	2.60	0.53	0.25	0.38	0.14
1.20	29.40	13.00	71.50	2.67	0.53	0.25	0.38	0.14
1.25	28.50	12.70	72.80	2.75	0.53	0.24	0.39	0.14
1.30	27.80	12.60	73.50	2.80	0.53	0.24	0.39	0.14
1.35	27.10	12.40	74.10	2.85	0.53	0.24	0.39	0.14
1.40	26.60	12.30	74.60	2.89	0.53	0.24	0.40	0.14
1.45	26.10	12.20	75.30	2.93	0.53	0.24	0.40	0.14
1.50	25.80	12.20	75.80	2.97	0.52	0.24	0.40	0.14
1.60	25.20	12.00	77.00	3.02	0.52	0.24	0.41	0.14
1.70	24.70	12.00	77.00	3.07	0.52	0.24	0.42	0.14
1.80	24.40	12.00	77.00	3.09	0.52	0.24	0.42	0.14
1.90	24.30	12.00	77.00	3.11	0.51	0.24	0.42	0.14
2.00	24.10	12.00	77.00	3.13	0.51	0.24	0.43	0.14

Table 49 Two-way slab with two adjacent fixed edges and the rest simply supported

pij= equivalent uniform load

ε=l _y /l _x	m _x	m _{xerm}	m _y	m _{yerm}	100 a	ρ _{xr}	ρ _{xerm}	ρ _{yr}	ρ_{yerm}	U _{xr}	U _{xerm}	Uyr	Uyerm
1.00	40.20	14.30	40.20	14.30	2.52	0.28	0.51	0.28	0.51	0.18	0.32	0.18	0.32
1.05	38.00	13.30	41.00	13.80	2.81	0.29	0.53	0.28	0.52	0.19	0.33	0.18	0.32
1.10	35.10	12.70	42.00	13.60	3.02	0.30	0.55	0.28	0.53	0.20	0.35	0.18	0.32
1.15	32.20	12.00	42.90	13.30	3.29	0.31	0.56	0.28	0.53	0.21	0.36	0.18	0.32
1.20	30.00	11.50	44.00	13.10	3.48	0.32	0.57	0.29	0.53	0.21	0.37	0.18	0.32
1.25	28.00	11.10	45.60	12.90	3.69	0.32	0.58	0.29	0.54	0.22	0.38	0.18	0.32
1.30	26.50	10.70	47.60	12.80	3.89	0.33	0.59	0.29	0.54	0.22	0.39	0.18	0.32
1.35	25.20	10.30	49.60	12.70	4.08	0.33	0.60	0.29	0.54	0.23	0.40	0.18	0.32
1.40	24.10	10.00	51.00	12.60	4.26	0.34	0.61	0.29	0.54	0.23	0.41	0.18	0.32
1.45	23.10	9.80	52.10	12.50	4.43	0.34	0.61	0.29	0.55	0.24	0.42	0.18	0.32
1.50	22.20	9.60	53.00	12.40	4.59	0.35	0.61	0.29	0.55	0.24	0.42	0.18	0.32
1.60	21.00	9.20	54.80	12.30	4.84	0.35	0.61	0.29	0.55	0.25	0.44	0.18	0.32
1.70	19.90	8.90	56.30	12.20	5.08	0.36	0.62	0.29	0.55	0.26	0.45	0.18	0.32
1.80	19.10	8.70	57.70	12.20	5.29	0.36	0.63	0.29	0.55	0.26	0.46	0.18	0.32
1.90	18.40	8.50	59.00	12.20	5.47	0.37	0.63	0.29	0.55	0.27	0.47	0.18	0.32
2.00	17.90	8.40	60.20	12.20	5.62	0.37	0.63	0.29	0.55	0.27	0.48	0.18	0.32

Table 50-1 Two-way slab with three fixed edges and the rest simply supported

pij= equivalent uniform load

$\epsilon = I_y / I_x$	m _x	m _{xerm}	m _y	m _{yerm}	100 a	ρ _{xr}	ρ_{xerm}	ρ_{yerm}	U _{xr}	U _{xerm}	Uyerm
1.00	59.50	18.30	44.10	16.20	1.88	0.25	0.45	0.47	0.14	0.25	0.30
1.05	51.60	16.60	43.60	15.40	2.12	0.26	0.48	0.49	0.15	0.26	0.31
1.10	46.10	15.40	43.70	14.80	2.36	0.27	0.50	0.50	0.16	0.28	0.31
1.15	41.40	14.40	44.20	14.30	2.60	0.28	0.51	0.51	0.16	0.29	0.32
1.20	37.50	13.50	44.80	13.90	2.84	0.29	0.53	0.52	0.17	0.30	0.32
1.25	34.20	12.70	45.80	13.50	3.08	0.30	0.54	0.52	0.18	0.31	0.32
1.30	31.80	12.20	46.90	13.30	3.29	0.31	0.55	0.53	0.19	0.33	0.32
1.35	29.60	11.60	48.60	13.10	3.51	0.32	0.56	0.53	0.19	0.34	0.32
1.40	28.00	11.20	50.30	13.00	3.71	0.32	0.57	0.54	0.20	0.35	0.32
1.45	26.40	10.90	52.30	12.80	3.91	0.33	0.58	0.54	0.21	0.36	0.32
1.50	25.20	10.60	55.00	12.70	4.09	0.33	0.58	0.54	0.21	0.37	0.32
1.60	23.30	10.10	61.60	12.60	4.42	0.34	0.59	0.54	0.22	0.38	0.32
1.70	21.70	9.70	70.40	12.50	4.71	0.35	0.60	0.54	0.23	0.40	0.32
1.80	20.50	9.40	79.60	12.40	4.95	0.36	0.61	0.55	0.24	0.41	0.32
1.90	19.50	9.00	89.80	12.30	5.18	0.36	0.61	0.55	0.24	0.42	0.32
2.00	18.70	8.80	101.00	12.30	5.39	0.37	0.62	0.55	0.25	0.43	0.32

Table 50-2 Two-way slab with three fixed edges and the rest simply supported

pij= equivalent uniform load

$\epsilon = I_y / I_x$	m _x	m _{xerm}	m _y	m _{yerm}	100 a	ρ _{xerm}	ρ _{yr}	ρ _{yerm}	U _{xerm}	Uyr	U _{yerm}
1.00	44.10	16.20	55.90	18.30	1.88	0.47	0.25	0.45	0.30	0.14	0.25
1.05	40.50	15.30	57.50	17.90	2.02	0.49	0.25	0.47	0.31	0.14	0.25
1.10	37.90	14.80	60.30	17.70	2.14	0.50	0.25	0.48	0.32	0.14	0.25
1.15	35.50	14.20	64.20	17.60	2.26	0.51	0.25	0.48	0.33	0.14	0.25
1.20	33.80	13.90	66.20	17.50	2.36	0.51	0.25	0.48	0.34	0.14	0.25
1.25	32.30	13.50	67.70	17.50	2.45	0.52	0.25	0.48	0.34	0.14	0.25
1.30	31.00	13.20	69.00	17.50	2.53	0.52	0.24	0.47	0.35	0.14	0.25
1.35	29.90	12.90	70.50	17.50	2.61	0.52	0.24	0.47	0.35	0.14	0.25
1.40	29.00	12.70	72.00	17.50	2.68	0.52	0.24	0.47	0.36	0.14	0.25
1.45	28.20	12.60	73.40	17.50	2.74	0.52	0.24	0.46	0.36	0.14	0.25
1.50	27.60	12.50	75.20	17.50	2.80	0.52	0.24	0.46	0.37	0.14	0.25
1.60	26.50	12.30	78.70	17.50	2.89	0.52	0.24	0.46	0.38	0.14	0.25
1.70	25.70	12.20	82.50	17.50	2.98	0.52	0.24	0.46	0.38	0.14	0.25
1.80	25.10	12.10	86.80	17.50	3.03	0.52	0.24	0.45	0.39	0.14	0.25
1.90	24.70	12.00	91.70	17.50	3.07	0.51	0.24	0.45	0.40	0.14	0.25
2.00	24.50	12.00	97.00	17.50	3.09	0.51	0.24	0.45	0.40	0.14	0.25

pij= equivalent uniform load

ε=l _y /lx	m _x	m _{xerm}	m _y	m _{yerm}	100 a	ρ _{xerm}	ρ _{yerm}	U _{xerm}	U _{yerm}
1.00	56.80	19.40	56.80	19.40	1.52	0.45	0.45	0.25	0.25
1.05	50.60	18.20	58.20	18.80	1.67	0.46	0.45	0.26	0.25
1.10	46.10	17.10	60.30	18.40	1.81	0.48	0.46	0.27	0.25
1.15	42.40	16.30	62.60	18.10	1.95	0.49	0.47	0.28	0.25
1.20	39.40	15.50	65.80	17.90	2.07	0.50	0.47	0.29	0.25
1.25	37.00	14.90	69.40	17.70	2.19	0.51	0.47	0.30	0.25
1.30	34.80	14.50	73.60	17.60	2.30	0.51	0.48	0.31	0.25
1.35	33.30	14.00	78.40	17.50	2.40	0.52	0.48	0.31	0.25
1.40	31.90	13.70	83.40	17.50	2.48	0.52	0.48	0.32	0.25
1.45	30.60	13.40	89.40	17.50	2.57	0.52	0.48	0.33	0.25
1.50	29.60	13.20	93.50	17.50	2.64	0.52	0.47	0.33	0.25
1.60	28.10	12.80	98.10	17.50	2.77	0.52	0.47	0.34	0.25
1.70	26.90	12.50	101.30	17.50	2.87	0.52	0.47	0.35	0.25
1.80	26.00	12.30	103.30	17.50	2.94	0.52	0.47	0.36	0.25
1.90	25.40	12.10	104.60	17.50	3.00	0.52	0.47	0.37	0.25
2.00	25.00	12.00	105.00	17.50	3.04	0.52	0.47	0.38	0.25

Table 52 Three-edge-supported slab, simply supported along all three edges

1. Uniform load

Mx	=p•l _y ²/m _x
My	=p·l _y ²/ m _y
M _{xy1}	=±p·l _y 2/ m _{xy1}
M _{xy2}	=±p·l _y ² / m_{xy2}
fm	=a•p•l _y 4/(E•h³)

p_{ij} = equivalent uniform load

ε=l _y :l _x	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50
m _x	4.04	4.12	4.41	4.89	5.53	6.34	7.32	8.46	9.77	11.25	12.90	14.73	16.73	18.90
m _y	8.43	8.92	10.51	12.95	16.44	20.94	26.58	33.47	41.67	50.42	59.99	70.42	81.67	93.75
m _{xy1}	2.23	2.74	3.84	5.10	6.58	8.31	10.32	12.65	15.30	18.27	21.56	25.17	19.10	33.34
m _{xy2}	2.90	3.83	6.32	10.07	15.79	24.47	37.57	57.22	80.46	129.7	193.3	286.3	421.8	618.4
100a	550	367	187	106	64.3	40.9	27.0	18.4	12.9	9.2	6.8	5.0	3.8	2.9
ρ _{xr}	0.53	0.53	0.52	0.51	0.50	0.48	0.45	0.43	0.40	0.38	0.36	0.34	0.32	0.31
ρ _{yr}	1.00	0.98	0.93	0.87	0.80	0.72	0.66	0.60	0.55	0.50	0.46	0.43	0.40	0.37
U _{xr}	0.50	0.50	0.50	0.50	0.49	0.46	0.43	0.40	0.38	0.35	0.33	0.31	0.29	0.28
Uyr	0.75	0.70	0.60	0.50	0.42	0.36	0.31	0.28	0.25	0.23	0.21	0.19	0.18	0.17

ε=l _y :l _x =	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50
m _x	2.04	2.07	2.24	2.46	2.73	3.04	3.38	3.75	4.12	4.52	4.92	5.32	5.71	6.12
m _y	61.3	43.5	31.2	25.8	22.4	21.1	2.10	21.9	23.4	25.0	26.8	28.6	30.5	32.6
m _{xy1}	0.33	0.42	0.64	0.94	1.34	1.88	2.66	3.75	5.20	7.15	9.90	13.8	18.9	26.0
m _{xy2}	0.31	0.39	0.55	0.74	0.93	1.12	1.32	1.52	1.73	1.93	2.13	2.33	2.55	2.75
100a	11.0	7.1	3.8	2.2	1.4	0.9	0.6	0.4	0.3	0.2	0.2	0.1	0.1	0.1

3. Uniformly distributed moment on the free edge

 $\begin{array}{ll} M_{x,min}{=}{-}m_r/m_{xmin} & M_y{=}{-}m_r/m_y \\ M_{x,max}{=}m_r/m_{xmax}\,, & \\ M_{xy1}{=}{\pm}m_r/m_{xy1}\,, & M_{xy2}{=}{\pm}m_r/m_{xy2} \\ M_{xy2}{=}{\pm}p{\cdot}l_y{}^2/m_{xy2} & \\ f_m{=}a{\cdot}m_r{\cdot}l_y{}^2/(E{\cdot}h^3) & \\ \end{array}$

ε=l _y :l _x =	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50
m _{xmax}	2.07	2.14	2.30	2.47	2.63	2.74	2.84	2.91	2.94	2.96	2.97	2.98	2.99	3.00
m _{xmin}	-	-	-	-	-	-	47.5	54.0	33.1	24.5	21.1	19.4	18.9	18.9
m _y	2.02	2.07	2.24	2.55	3.01	3.65	4.52	5.68	7.28	9.52	12.5	16.3	22.2	32.2
m _{xy1}	-0.44	-0.61	-1.23	-2.80	-10.6	17.9	7.95	6.40	6.15	6.35	7.05	8.60	10.2	11.5
m _{xy2}	0.20	0.22	0.25	0.27	0.29	0.30	0.32	0.33	0.34	0.36	0.37	0.39	0.40	0.42
100a	11.3	7.4	4.0	2.3	1.5	1.1	0.8	0.6	0.5	0.4	0.3	0.3	0.2	0.2

 Table 53-1
 Three-edge-supported slab, fixed along the edge opposite the free edge and simply supported along the other two edges

1. Uniform load

ε=l _y :l _x =	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50
m _x	26.43	18.09	11.75	9.71	9.09	9.13	9.59	10.36	11.37	12.61	14.06	15.72	17.58	19.64
m _y	170.0	90.0	46.80	35.71	33.33	35.35	39.68	45.36	54.48	66.44	78.48	92.89	110.6	132.3
m _{yerm}	2.26	2.42	2.85	3.41	4.11	4.94	5.95	7.14	8.51	10.06	11.79	13.72	15.82	18.13
m _{xy}	8.00	8.32	9.11	10.38	12.21	14.66	17.87	21.09	27.24	33.83	42.07	52.32	65.00	80.73
100a	120	105	78	56.3	40.4	29.0	20.9	15.2	11.1	8.3	6.2	4.7	3.6	2.8
ρ _{xr}	0.21	0.21	0.23	0.26	0.28	0.30	0.32	0.32	0.32	0.32	0.31	0.30	0.29	0.28
ρ _{yerm}	1.03	1.04	1.04	1.01	0.96	0.90	0.83	0.78	0.71	0.66	0.61	0.56	0.53	0.49
U _{xr}	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.29	0.28	0.28	0.27	0.26	0.25	0.24
Uyerm	0.86	0.83	0.77	0.71	0.65	0.60	0.54	0.48	0.43	0.39	0.36	0.33	0.31	0.29

 $M_x = p \cdot l_y/m_x$ My=-p·ly/my Myerm=-p·l_x/ myerm M_{xy2}=±p·l_x/ m_{xy2} $f_m = a \cdot p \cdot l_y^3 / (E \cdot h^3)$

ε=l _y :l _x =	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50
m _x	16.9	15.4	13.2	11.1	10.3	10.4	11.0	12.1	13.6	15.6	18.1	21.1	24.6	29.1
m _y	2.70	3.18	4.60	6.65	9.42	12.7	16.5	20.6	23.6	25.4	27.2	29.1	31.2	33.5
m _{yerm}	1.18	1.30	1.66	2.19	2.94	4.03	5.56	7.63	10.5	14.4	20.2	28.2	39.6	54.3
± m _{xy}	0.65	0.66	0.71	0.82	0.95	1.12	1.30	1.48	1.68	1.89	2.10	2.32	2.53	2.75
100a	3.1	2.8	2.0	1.5	1.1	0.7	0.5	0.4	0.3	0.2	0.2	0.1	0.1	0.1

3. Uniformly distributed moment on the free edge

M_{x,max}=m_r/m_{xmax}, M_{yerm} =- m_r/m_{yerm} , M_{xy2} =± $m_r/$ m_{xy2} $M_{xy2}=\pm m_r/m_{xy2}$ $f_m = a \cdot m_r \cdot I_y^2 / (E \cdot h^3)$

 $M_{x,min}$ =- $m_r/m_{xmin}M_y$ =- m_r/m_y

ε=l _y :l _x =	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50
m _{xmax}	6.50	4.67	3.30	2.86	2.73	2.73	2.76	2.81	2.86	2.90	2.94	2.97	2.99	3.00
m _{xmin}	-	-	-	710	400	250	155	90.0	52.7	35.5	29.5	22.9	21.0	20.6
m _y	1.25	1.41	1.81	2.31	2.93	3.64	4.64	5.83	7.46	12.1	12.5	16.4	22.2	31.8
m _{yerm}	1.38	1.68	2.83	5.90	20.7	-33.9	-15.7	-12.9	-12.0	-12.5	-13.5	-15.4	-18.2	-23.5
m _{xy}	0.27	0.27	0.27	0.27	0.29	0.30	0.32	0.33	0.34	0.36	0.37	0.39	0.40	0.42
100f	4.6	4.0	2.9	2.1	1.5	1.1	0.8	0.6	0.5	0.4	0.3	0.3	0.2	0.2

 Table 53-2
 Three-edge-supported slab, fixed along the edge perpendicular to the free edge and simply supported along the other two edges

1. Uniform load

M _x =p•l _y ²/m _x
$M_y=p\cdot l_y^2/m_y$
$M_{xy1}=\pm p \cdot l_y^2/m_{xy1}$
$M_{xere} \text{=-} p \text{-} l_y^2 / m_{xere}$
f _m =a•p•l _y 4/(E•h ³)

V_{xr}=ρ_{xr}•p•l_y V_{xere}= ρ_{xere}•p•l_y p_{xr}=υ_{xr}•p•l_y p_{xere}= υ_{xere}•p•l_y p_{ij}= equivalent uniform load

ε=l _y :l _x =	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50
m _x	4.18	4.13	4.88	5.91	7.23	8.75	10.49	12.60	14.95	17.85	20.94	24.31	28.10	32.18
m _y	9.05	10.05	12.95	17.06	22.64	29.69	38.43	48.50	59.88	72.45	86.22	101.2	117.4	134.7
m _{xere}	0.80	1.02	1.53	2.18	2.98	3.94	5.08	6.40	7.89	9.56	11.40	13.41	15.58	17.92
m _{xy1}	2.48	3.12	4.61	6.46	8.74	11.44	14.71	18.42	22.63	27.31	32.45	38.06	44.13	50.66
m _{xy2}	3.35	4.91	8.34	14.82	25.90	44.88	77.29	132.6	227.2	389.6	669.8	1157	2016	3549
100f	446	283	131	67.8	37.9	22.5	14.0	9.1	6.1	4.2	3.0	2.2	1.6	1.2
ρ _{xr}	0.53	0.53	0.51	0.50	0.46	0.43	0.40	0.37	0.34	0.32	0.32	0.28	0.26	0.25
ρ _{yr}	1.13	1.06	0.98	0.89	0.83	0.77	0.71	0.65	0.5:	0.56	0.52	0.48	0.45	0.42
ρ _{xerm}	0.71	0.68	0.60	0.52	0.45	0.40	0.35	0.31	0.29	0.26	0.24	0.22	0.20	0.19
U _{xr}	0.29	0.29	0.86	0.80	0.73	0.67	0.61	0.56	0.52	0.48	0.45	0.42	0.39	0.37
Uyr	0.50	0.50	0.50	0.46	0.42	0.39	0.35	0.32	0.30	0.28	0.26	0.24	0.23	0.21
U _{xerm}	0.66	0.59	0.46	0.37	0.31	0.26	0.23	0.20	0.18	0.17	0.15	0.14	0.13	0.12

$$\begin{split} M_x = p \cdot I_y / m_x , & M_y = -p \cdot I_y / m_y \\ M_{xy1} = \pm p \cdot I_y / m_{yerm} , & M_{xy2} = \pm p \cdot I_y / m_{xy2} \\ M_{xere} = -p \cdot I_y / m_{xere} \\ f_m = a \cdot p \cdot I_y^3 / (E \cdot h^3) \end{split}$$

ε=l _y :l _x =	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50
m _x	2.09	2.18	2.47	2.86	3.31	3.82	4.34	4.89	5.43	5.98	6.53	7.09	7.64	8.19
m _y	8.23	9.75	11.4	13.2	14.2	15.3	16.6	18.2	20.2	22.4	24.5	26.3	28.4	30.8
m _{xere}	0.45	0.52	0.68	0.86	1.03	1.22	1.40	1.58	1.78	1.97	2.17	2.37	2.58	2.79
m _{xy1}	0.37	0.48	0.80	1.28	2.03	3.21	5.08	8.10	13.0	20.8	33.8	55.1	91.0	153
m _{xy2}	0.35	0.44	0.65	0.88	1.10	1.33	1.55	1.76	1.98	2.20	2.42	2.65	2.88	3.11
100f	9.30	5.90	2.80	1.50	0.90	0.60	0.40	0.30	0.20	0.10	0.10	0.10	0.10	0.10

3. Uniformly distributed moment on the free edge

$$\begin{split} M_{x,max} = m_r/m_{xmax} , & M_{x,min} = -m_r/m_{xmin}, \\ M_{y,min} = -m_r/m_{ymin} & & & \\ M_{xy1} = \pm m_r/m_{xy1} , & M_{xy2} = \pm m_r/m_{xy2} & & & \\ M_{xere\ min} = -m_r/m_{xeremin} , & M_{xere\ max} = m_r/m_{xeremax} & \\ f_m = a \cdot m_r \cdot l_y^2/(E \cdot h^3) & & \\ \end{split}$$

ε=l _y :l _x =	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50
m _{xmax}	2.12	2.22	2.48	2.71	2.88	3.00	3.04	3.04	3.08	3.10	3.13	3.13	3.14	3.15
m _{xmin}	-	-	-	-	-	15.2	16.2	18.0	17.0	17.0	17.3	17.1	16.8	16.8
m _{ymin}	1.95	2.00	2.16	2.51	3.06	3.88	5.09	6.87	9.49	13.5	19.9	31.3	54.6	121
m _{ymax}	-	-	-	-	-	-	-	-	-	340	185	135	107	94.3
m _{xeremin}	0.39	0.42	0.48	0.51	0.52	0.54	0.55	0.56	0.57	0.58	0.60	0.61	0.63	0.65
m _{xeremax}	-	-	-	13.8	7.35	5.62	5.10	4.72	4.65	4.63	4.50	4.52	4.61	4.76
m _{xy1}	-0.50	-0.74	-1.79	-7.25	12.9	5.70	4.88	5.00	5.70	6.85	8.55	11.0	14.5	19.5
m _{xy2}	0.21	0.23	0.26	0.27	0.28	0.29	0.31	0.32	0.33	0.34	0.35	0.37	0.38	0.40
100f	9.60	6.10	3.00	1.80	1.20	0.80	0.60	0.50	0.40	0.30	0.30	0.20	0.20	0.20

 Table 54
 Three-edge-supported slab, fixed along two opposite edges and simply supported along the third edge

1. Uniform load

$$\begin{split} M_x = \mathbf{p} \cdot \mathbf{l}_y^2 / m_x, \ M_y = \mathbf{p} \cdot \mathbf{l}_y^2 / \ m_y \\ M_{xere} = -\mathbf{p} \cdot \mathbf{l}_y^2 / \ m_{xere} \\ f_m = \mathbf{a} \cdot \mathbf{p} \cdot \mathbf{l}_y^4 / (\mathbf{E} \cdot \mathbf{h}^3) \end{split}$$

$$\begin{split} &V_{xerm} = \rho_{xerm} \cdot p \cdot I_y, \ &V_{yr} = \rho_{yr} \cdot p \cdot I_y \\ &\rho_{xerm} = u_{xerm} \cdot p \cdot I_y, \ &\rho_{yr} = u_{yr} \cdot p \cdot I_y \\ &\rho_{ij} = equivalent uniform load \end{split}$$

ε=l _y :l _x =	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50
m _x	4.30	4.67	5.80	7.42	9.58	12.27	15.53	19.35	23.76	28.73	34.22	40.24	46.76	53.74
m _y	9.72	11.11	15.38	21.36	29.03	38.58	49.61	61.38	76.33	92.36	110.8	131.0	151.9	174.4
m _{xere}	0.90	1.20	1.89	2.83	4.04	5.53	7.30	9.35	11.67	14.25	17.07	20.13	23.43	26.96
100a	362	219	92.7	44.4	23.3	13.1	7.8	4.9	3.2	2.2	1.6	1.1	0.8	0.6
ρ _{xerm}	1.10	1.03	0.93	0.84	0.76	0.68	0.62	0.56	0.51	0.47	0.43	0.40	0.37	0.34
ρ _{yr}	0.69	0.65	0.55	0.46	0.39	0.34	0.30	0.27	0.24	0.22	0.20	0.19	0.17	0.16
U _{xerm}	0.87	0.86	0.80	0.71	0.63	0.57	0.51	0.47	0.43	0.39	0.37	0.34	0.32	0.30
U _{yr}	0.57	0.48	0.36	0.29	0.24	0.21	0.18	0.16	0.14	0.13	0.12	0.11	0.10	0.10

$$\begin{split} M_x = \mathbf{p} \cdot \mathbf{l}_y / m_x , \ M_y = -\mathbf{p} \cdot \mathbf{l}_y / \ m_y \\ M_{xere} = -\mathbf{p} \cdot \mathbf{l}_y / \ m_{xere} \\ f_m = \mathbf{a} \cdot \mathbf{p} \cdot \mathbf{l}_y^3 / (\mathbf{E} \cdot \mathbf{h}^3) \end{split}$$

ε=l _y :l _x =	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50
m _x	2.20	2.36	2.88	3.53	4.23	4.97	5.71	6.45	7.18	7.91	8.64	9.37	10.1	10.9
m _y	14.5	12.6	11.9	12.1	12.6	14.1	15.6	17.7	19.7	22.0	24.4	26.8	29.1	31.4
m _{xere}	0.49	0.59	0.79	1.02	1.24	1.48	1.71	1.94	2.19	2.43	2.69	2.95	3.23	3.51
100a	7.7	4.7	2.1	1.1	0.6	0.4	0.3	0.2	0.1	0.1	0.1	0.1	0.05	0.05

3. Uniformly distributed moment on the free edge

$M_{x,max}=m_r/m_{xmax}$,
$M_{x,min}$ = - m_r/m_{xmin} ,
Mxere min =-mr/mxeremin
fm=a•mr•ly²/(E•h³)

M _{y,max} =m _r /m _{ymax}	
$M_{y,min}$ = - m_r/m_{ymin}	
Mxere max =mr/mxeremax	<

ε=l _y :l _x =	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50
m _{xmin}	2.21	2.41	2.82	3.16	3.37	3.46	3.49	3.49	3.50	3.50	3.51	3.51	3.52	3.54
m _{xmax}	1.73	3.05	6.65	12.3	22.5	25.0	21.3	17.8	16.3	16.3	16.9	18.3	20.4	23.2
m _{ymin}	1.93	1.96	2.13	2.53	3.21	4.22	5.95	8.62	13.3	22.2	41.7	125	-400	-125
m _{ymax}	-	-	-	-	-	-	-	-	210	105	78.8	63.8	61.4	65.4
m _{xeremin}	0.42	0.46	0.52	0.55	0.57	0.59	0.61	0.62	0.64	0.67	0.69	0.72	0.74	0.77
m _{xeremax}	-	-	38.5	8.55	5.60	4.66	4.52	4.42	4.37	4.33	4.32	4.32	4.31	4.31
100a	8.0	5.0	2.5	1.5	1.0	0.7	0.5	0.4	0.3	0.3	0.2	0.2	0.2	0.1

Table 55 Three-edge-supported slab, fixed along two adjacent edges and simply supported along the third edge

1. Uniform load

$$\begin{split} M_x = p \cdot I_y^2 / m_x, & M_y = p \cdot I_y^2 / m_y \\ M_{xere} = -p \cdot I_y^2 / m_{xere}, & M_{yerm} = -p \cdot I_y^2 / m_{yerm} \\ M_{xy2} = p \cdot I_y^2 / m_{xy2}, & f_m = a \cdot p \cdot I_y^4 / (E \cdot h^3) \end{split}$$

$$\begin{split} & V_{xr} = \rho_{xr} \cdot p \cdot I_y, V_{xerm} = \rho_{xerm} \cdot p \cdot I_y, V_{yerm} = \rho_{yerm} \cdot p \cdot I_y \\ & p_{xr} = u_{xr} \cdot p \cdot I_y, p_{xerm} = u_{xerm} \cdot p \cdot I_y, p_{yerm} = u_{yerm} \cdot p \cdot I_y \\ & p_{ij} = equivalent uniform load \end{split}$$

ε=l _y :l _x =	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50
m _x	14.08	12.98	10.86	9.80	9.80	10.63	12.04	13.69	15.87	18.51	21.27	24.39	27.77	31.25
m _y	133.3	76.92	43.47	38.40	40.00	43.47	54.05	67.56	80.00	100.0	120.5	140.8	166.7	200.0
m _{xere}	2.11	2.20	2.50	2.96	3.60	4.43	5.45	6.66	8.06	9.66	11.44	13.40	15.53	17.84
m _{yerm}	2.33	2.56	3.20	4.11	5.28	6.74	8.48	10.53	12.86	15.47	18.35	21.51	24.93	28.61
m _{xy2}	8.56	8.73	9.95	12.07	15.29	19.84	26.10	34.60	45.87	60.60	80.80	105.3	138.9	181.8
100a	114	96.6	65.7	43.1	28.1	18.4	12.2	8.3	5.8	4.1	2.9	2.2	1.6	1.2
ρ _{xr}	0.21	0.22	0.25	0.28	0.30	0.31	0.31	0.31	0.30	0.28	0.27	0.26	0.25	0.24
ρ _{xerm}	0.43	0.44	0.48	0.51	0.55	0.56	0.56	0.54	0.52	0.50	0.48	0.45	0.43	0.40
ρ _{yerm}	1.02	1.03	0.99	0.92	0.83	0.75	0.67	0.61	0.55	0.50	0.46	0.42	0.39	0.37
U _{xerm}	0.50	0.50	0.50	0.50	0.50	0.50	0.48	0.46	0.43	0.41	0.39	0.37	0.35	0.33
U _{xr}	0.29	0.29	0.29	0.29	0.29	0.29	0.28	0.26	0.25	0.24	0.22	0.21	0.20	0.19
U _{yerm}	0.80	0.76	0.68	0.61	0.53	0.45	0.39	0.35	0.32	0.29	0.26	0.24	0.23	0.21

$$\begin{split} M_x = p \cdot I_y / m_x , & M_y = -p \cdot I_y / m_y \\ M_{xere} = -p \cdot I_y / & m_{xere}, & M_{yerm} = -p \cdot I_y / & m_{yerm} \\ M_{xy2} = p \cdot I_y^2 / & m_{xy2}, & f_m = a \cdot p \cdot I_y^3 / (E \cdot h^3) \end{split}$$

ε=l _y :l _x =	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50
m _x	5.55	5.04	4.24	3.88	3.91	4.17	4.54	5.00	5.49	6.01	6.55	7.10	7.64	8.19
m _y	2.83	3.42	5.12	7.50	10.4	13.7	17.4	21.5	26.5	32.5	39.5	48.1	59.1	72.3
m _{xere}	0.98	0.93	0.93	1.00	1.13	1.26	1.42	1.60	1.78	1.97	2.17	2.37	2.58	2.79
m _{yerm}	1.22	1.40	1.92	2.80	4.23	6.54	10.3	16.6	26.8	43.8	72.7	122	207	359
m _{xy2}	0.65	0.67	0.75	0.90	1.09	1.30	1.52	1.74	1.97	2.19	2.41	2.64	2.88	3.11
100a	3.0	2.6	1.8	1.2	0.8	0.5	0.4	0.3	0.2	0.1	0.1	0.1	0.1	0.1

3. Uniformly distributed moment on the free edge

M_{x,max}=m_r/m_{xmax}, M_{x,min}=-m_r/m_{xmin}, M_y=-m_r/m_y M_{xere min}=-m_r/m_{xeremin}, M_{xere max}=m_r/m_{xeremax}

Myere min=mr/myeremin

 $M_{yere\ max} = m_r/m_{yeremax},\ M_{xy2} = p \boldsymbol{\cdot} l_y^2/m_{xy2},\ f_m = a \boldsymbol{\cdot} m_r \boldsymbol{\cdot} l_y^2/(E \boldsymbol{\cdot} h^3)$

ε=l _y :l _x =	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50
m _{xmax}	3.46	2.29	3.03	2.83	2.81	2.87	2.95	3.01	3.06	3.09	3.11	3.12	3.13	3.15
m _{xmin}	-	-	-	6.54	5.83	7.89	5.84	7.23	9.22	12.2	17.1	17.9	17.2	17.1
m _y	1.29	1.46	1.91	2.45	3.14	4.03	5.26	7.01	9.58	13.4	19.6	30.4	52.4	112
m _{xeremin}	0.61	0.56	0.52	0.51	0.52	0.53	0.54	0.56	0.57	0.58	0.60	0.61	0.63	0.65
m _{xeremax}	-	-	27.0	16.0	10.2	7.35	6.37	5.35	5.05	4.81	4.61	4.59	4.65	4.78
m _{yermmin}	1.45	1.86	2.78	13.5	-18.1	-9.51	-8.54	-9.15	-10.7	-13.4	-17.2	-23.0	-31.3	-43.5
m _{yermax}	-	-	13.5	13.4	11.3	9.21	8.54	9.15	10.7	13.1	16.7	22.0	29.7	40.8
m _{xy2}	0.27	0.26	0.26	0.27	0.28	0.30	0.31	0.32	0.33	0.34	0.35	0.37	0.38	0.40
100a	4.47	3.81	2.59	1.78	1.19	0.875	0.647	0.494	0.400	0.331	0.278	0.229	0.197	0.172

1. Uniform load

$$\begin{split} &M_x = p \cdot l_y^2 / m_x, \, M_y = p \cdot l_y^2 / \, m_y \\ &M_{xere} = - p \cdot l_y^2 / \, m_{xere}, \, M_{yerm} = - p \cdot l_y^2 / \, m_{yerm} \\ &f_m = a \cdot p \cdot l_y^4 / (E \cdot h^3) \end{split}$$

Vxerm= pxerm•p•ly, Vyerm= pyerm•p•ly pxerm= uxerm•p•ly, pyerm= uyerm•p•ly pij= equivalent uniform load

ε=l _y :l _x =	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50
m _x	19.24	13.91	10.69	10.64	11.87	13.94	16.73	20.18	24.29	29.02	34.35	40.26	46.71	53.69
m _y	104.2	62.46	43.24	41.67	48.00	58.45	72.73	89.55	108.7	131.5	156.5	183.7	213.0	244.6
m _{xere}	2.15	2.27	2.71	3.43	4.45	5.77	7.41	9.35	11.59	14.11	16.90	19.94	23.22	26.73
m _{yerm}	2.41	2.71	3.61	4.93	6.66	8.81	11.34	14.29	17.59	21.26	25.28	29.66	34.39	39.47
100a	108.1	88.4	54.8	32.7	19.5	11.8	7.4	4.8	3.2	2.2	1.6	1.1	0.8	0.6
P _{xere}	0.44	0.45	0.50	0.53	0.55	0.54	0.52	0.50	0.47	0.44	0.41	0.38	0.36	0.34
Pyerm	1.03	1.02	0.95	0.85	0.75	0.65	0.58	0.52	0.46	0.42	0.39	0.36	0.33	0.31
U _{xere}	0.50	0.50	0.50	0.50	0.49	0.46	0.43	0.40	0.38	0.35	0.33	0.31	0.29	0.28
U _{yerm}	0.75	0.70	0.60	0.50	0.42	0.36	0.31	0.28	0.25	0.23	0.21	0.19	0.18	0.17

$$\begin{split} M_x = p \cdot I_y / m_x \ , \ M_y = - p \cdot I_y / \ m_y \\ M_{xere} = - p \cdot I_y / \ m_{xere}, \ M_{yerm} = - p \cdot I_y / \ m_{yerm} \\ f_m = a \cdot p \cdot I_y^3 / (E \cdot h^3) \end{split}$$

ε=l _y :l _x =	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50
m _x	7.80	5.64	4.32	4.23	4.57	5.15	5.77	6.47	7.18	7.91	8.64	9.37	10.1	10.9
m _y	2.95	3.66	5.72	8.35	11.4	14.0	15.8	17.6	19.7	22.0	24.4	26.8	29.1	31.4
m _{xere}	0.99	0.95	0.99	1.11	1.28	1.48	1.71	1.94	2.19	2.43	2.69	2.95	3.23	3.51
m _{yerm}	1.26	1.49	2.29	3.88	6.72	13.1	26.3	57.7	130	297	-	-	-	-
100a	3.0	2.5	1.4	0.9	0.6	0.4	0.2	0.2	0.1	0.1	0.1	0.1	0.05	0.05

3. Uniformly distributed moment on the free edge

$$\begin{split} M_{x,max} = & m_r/m_{xmax}, M_{x,min} = -m_r/m_{xmin}, M_y = -m_r/m_y \\ M_{xere \ min} = & -m_r/m_{xeremin}, M_{xere \ max} = & m_r/m_{xeremax} \\ f_m = & a \cdot m_r \cdot I_y^2 / (E \cdot h^3) \end{split}$$

Myerm=-mr/myerm

ε=l _y :l _x =	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50
m _{xmax}	5.40	4.00	3.14	3.07	3.18	3.29	3.40	3.44	3.48	3.49	3.50	3.52	3.53	3.54
m _{xmin}	5.98	7.00	8.20	11.6	18.5	29.5	27.8	21.3	18.5	17.5	17.9	18.7	20.4	23.4
m _y	1.32	1.52	2.01	2.60	3.36	4.39	6.07	8.62	13.1	21.7	40.0	100	¥	-130
m _{xeremin}	0.61	0.57	0.54	0.55	0.56	0.57	0.60	0.62	0.64	0.67	0.69	0.72	0.74	0.77
m _{xeremax}	300	69.0	23.2	12.2	7.82	6.03	5.10	4.72	4.52	4.42	4.37	4.33	4.31	4.31
m _{yerm}	1.52	2.08	6.05	-29.2	-8.03	-6.90	-7.55	-9.00	-12.7	-18.5	-27.8	-41.7	-66.7	-115
100a	4.4	3.6	2.3	1.5	1.0	0.7	0.5	0.4	0.3	0.3	0.2	0.2	0.2	0.1

1. Uniform load p

$$\begin{split} & \mathsf{K} = p \cdot I_x \cdot I_y, \ \mathsf{M} = \mathsf{K}/\mathsf{m}, \ \mathsf{f}_\mathsf{m} = a \cdot p \cdot I_x^4 / (\mathsf{E} \cdot \mathsf{h}^3) \\ & \mathsf{V}_{xr} = \rho_{xr} \cdot \mathsf{K}/I_y, \ \mathsf{V}_{yr} = \rho_{xr} \cdot \mathsf{K}/I_x \\ & \mathsf{p}_{xr} = \mathsf{u}_{xr} \cdot \ \mathsf{K}/I_y, \ \mathsf{p}_{yr} = \mathsf{u}_{yr} \ \mathsf{K}/I_x \\ & \mathsf{p}_{ij} = \mathsf{equivalent uniform load} \end{split}$$

ε=l _y :l _x =	1.00	1.25	1.50	1.75	2.00
m _{xmin}	-4.81	-4.79	-4.72	-4.65	-4.60
m _{xmax}	4.81	4.79	4.72	4.65	4.60
m _{ymin}	-4.81	-4.79	-4.72	4.65	-4.60
m _{ymax}	4.81	4.47	4.29	4.24	4.20
100a	150	235	337	458	600
ρ _{xr}	0.58	0.67	0.75	0.81	0.85
ρ _{yr}	0.44	0.39	0.34	0.30	0.27
U _{xr}	0.50	0.60	0.67	0.71	0.75
U _{yr}	0.50	0.40	0.33	0.29	0.25

2. Uniformly distributed force on line at $x=I_x$

K= $p \cdot I_y$, M=K/m, fm= $a \cdot p \cdot I_x^3/(E \cdot h^3)$

ε=l _y :l _x =	1.00	1.25	1.50	1.75	2.00
m _{xmin}	-2.64	-2.58	-2.52	-2.48	-2.44
m _{xmax}	2.64	2.58	2.52	2.48	2.44
m _{ymin}	-2.64	-2.58	-2.52	-2.48	-2.44
m _{ymax}	1.92	1.91	1.93	1.95	1.95
100a	300	469	674	916	1200

3. Uniformly distributed force on line at $y=I_y$

 $\mathsf{K=p}{\cdot}\mathsf{I}_x,\,\mathsf{M=K/m},\,\mathsf{f}_m{=}a{\cdot}p{\cdot}\mathsf{I}_x{}^3/(\mathsf{E}{\cdot}\mathsf{h}^3)$

ε=l _y :l _x =	1.00	1.25	1.50	1.75	2.00
m _{xmin}	-2.64	-2.68	-2.72	-2.75	-2.79
m _{xmax}	1.92	1.94	1.94	1.95	1.95
m _{ymin}	-2.64	-2.68	-2.72	-2.75	-2.79
m _{ymax}	2.64	2.68	2.72	2.75	2.79
100a	300	374	449	524	600

4. Uniformly distributed moment m_R on line at x=I_x

 $K=m_R$, M=K/m, $f_m=a\cdot m_R\cdot l_x^2/(E\cdot h^3)$

ε=l _y :l _x =	1.00	1.25	1.50	1.75	2.00
m _{xmin}	-0.84	-0.84	-0.81	-0.79	-0.77
m _{xmax}	1.10	1.00	0.92	0.86	0.80
m _{ymin}	-1.10	-1.00	-0.92	-0.86	-0.80
m _{ymax}	1.10	1.00	0.92	0.86	0.80
100a	300	469	674	916	1200

5. Uniformly distributed moment m_R on line at $y=I_y$

K=m_R, M=K/m, $f_m=a \cdot m_R \cdot l_x^2/(E \cdot h^3)$

ε=l _y :l _x =	1.00	1.25	1.50	1.75	2.00
m _{xmin}	-1.10	-1.20	-1.30	-1.40	-1.50
m _{xmax}	1.10	1.20	1.30	1.40	1.50
m _{ymin}	-0.84	-0.85	-0.85	-0.86	-0.86
m _{ymax}	1.10	1.20	1.30	1.40	1.50
100a	300	300	300	300	300

Table 58 Two-edge-supported slab, fixed along one edge and simply supported along the other edge

1. Uniform load p

$$\begin{split} &\mathsf{K}=\mathsf{p}{\boldsymbol{\cdot}}\mathsf{I}_x{\boldsymbol{\cdot}}\mathsf{I}_y, \, \mathsf{M}{\boldsymbol{=}}\mathsf{K}/\mathsf{m}, \, \mathsf{f}_{\mathsf{m}}{\boldsymbol{=}}\mathfrak{a}{\boldsymbol{\cdot}}\mathfrak{p}{\boldsymbol{\cdot}}\mathsf{I}_x^{4}/(\mathsf{E}{\boldsymbol{\cdot}}\mathsf{h}^3) \\ &\mathsf{V}_{xr}{\boldsymbol{=}} \, \rho_{xr}{\boldsymbol{\cdot}}\mathsf{K}/\mathsf{I}_y, \, \mathsf{V}_{yr}{\boldsymbol{=}} \, \rho_{xr}{\boldsymbol{\cdot}}\mathsf{K}/\mathsf{I}_x \\ &\rho_{xr}{\boldsymbol{=}} \, \upsilon_{xr}{\boldsymbol{\cdot}} \, \mathsf{K}/\mathsf{I}_y, \, \rho_{yr}{\boldsymbol{=}} \, \upsilon_{yr} \, \mathsf{K}/\mathsf{I}_x \\ &\rho_{ij}{\boldsymbol{=}} \, \mathsf{equivalent} \, \mathsf{uniform} \, \mathsf{load} \end{split}$$

ε=l _y :l _x =	0.50	0.60	0.80	1.00	1.25	1.50	1.75	2.00
m _{xmin}	-1.94	-2.00	-2.20	-2.45	-2.81	-3.20	-3.61	-4.03
m _{xmax}	6.45	7.17	9.42	10.5	11.7	13.1	14.7	16.5
m _{ymin}	-7.73	-8.42	-9.52	-10.5	-11.7	-13.1	-14.7	-16.5
m _{ymax}	7.05	7.25	7.25	7.43	7.90	9.00	10.3	11.6
100a	420	269	129	69.8	88.9	104	117	126
ρ _{xr}	1.04	1.12	1.21	1.23	1.20	1.16	1.11	1.08
ρ _{yr}	0.70	0.60	0.47	0.38	0.31	0.26	0.22	0.19
U _{xr}	0.43	0.52	0.64	0.71	0.77	0.81	0.84	0.86
U _{yr}	0.57	0.48	0.36	0.29	0.23	0.19	0.16	0.14

2. Uniformly distributed force on line at $x=I_x$ K= p·ly, M=K/m, fm=a·p·lx³/(E·h³)

ε=l _y :l _x =	0.50	0.60	0.80	1.00	1.25	1.50	1.75	2.00
m _{xmin}	-1.47	-1.43	-1.43	-1.49	-1.61	-1.77	-1.96	-2.16
m _{xmax}	2.82	2.82	2.92	3.13	3.50	3.96	4.48	5.06
m _{ymin}	-2.82	-2.82	-2.92	-3.13	-3.50	-3.96	-4.48	-5.06
m _{ymax}	1.99	2.01	2.14	2.36	2.64	2.99	3.45	3.84
100a	486	382	252	175	226	269	302	329

3. Uniformly distributed force on line at $y=I_y$ K= p·I_x, M=K/m, f_m=a·p·I_x³/(E·h³)

ε=l _y :l _x =	0.50	0.60	0.80	1.00	1.25	1.50	1.75	2.00
m _{xmin}	-0.90	-0.89	-0.89	-0.91	-0.91	-0.93	-0.95	-0.97
m _{xmax}	3.10	3.35	3.90	4.49	4.97	5.32	5.45	5.64
m _{ymin}	-3.95	-4.00	-4.22	-4.63	-5.45	-5.92	-6.33	-6.93
m _{ymax}	4.26	4.79	5.96	7.16	8.80	5.46	8.95	8.48
100a	851	548	268	150	160	166	169	170

4. Uniformly distributed moment m_R on line at x=I_x K=m_R, M=K/m, f_m=a·m_R·l_x^2/(E·h^3)

ε=:I _x =I _y	0.50	0.60	0.80	1.00	1.25	1.50	1.75	2.00
m _{xmin}	-0.86	-0.86	-0.86	-0.86	-0.86	-0.87	-0.89	-0.89
m _{xmax}	1.13	1.13	1.13	1.13	1.09	1.08	1.08	1.10
m _{ymin}	-1.13	-1.13	-1.13	-1.13	-1.09	-1.08	-1.08	-1.10
m _{yma} x	1.13	1.13	1.13	1.13	1.09	1.08	1.08	1.10
100a	296	289	268	241	319	385	436	476

5. Uniformly distributed moment m_R on line at y=l_y K= m_R , M=K/m, fm=a·m_R·l_x²/(E·h³)

ε=l _y :l _x =	0.50	0.60	0.80	1.00	1.25	1.50	1.75	2.00
m _{xmin}	-0.49	-0.49	-0.49	-0.49	-0.53	-0.57	-0.61	-0.66
m _{xmax}	3.54	3.54	3.54	3.54	3.57	3.65	3.86	4.07
m _{ymin}	-0.81	-0.81	-0.81	-0.81	-0.81	-0.83	-0.86	-0.88
m _{ymax}	8.67	8.67	8.67	8.67	5.35	4.95	4.44	4.30
100a	876	577	297	178	175	172	156	152

1. Uniform load p

$$\begin{split} & \mathsf{K} = p \cdot \mathbf{I}_x \cdot \mathbf{I}_y, \ \mathsf{M} = \mathsf{K}/\mathsf{m}, \ \mathsf{f}_\mathsf{m} = a \cdot p \cdot \mathbf{I}_x^4 / (\mathsf{E} \cdot \mathsf{h}^3) \\ & \mathsf{V}_{xr} = \rho_{xr} \cdot \mathsf{K} / \mathsf{I}_y, \ \mathsf{V}_{yr} = \rho_{xr} \cdot \mathsf{K} / \mathsf{I}_x \\ & \rho_{xr} = \upsilon_{xr} \cdot \mathsf{K} / \mathsf{I}_y, \ \mathsf{p}_{yr} = \upsilon_{yr} \cdot \mathsf{K} / \mathsf{I}_x \\ & \mathsf{p}_{ij} = \mathsf{equivalent} \ \mathsf{uniform} \ \mathsf{load} \end{split}$$

ε=l _y :l _x =	1.00	1.25	1.50	1.75	2.00
m _{xmin}	-3.23	-3.29	-3.51	-3.81	-4.18
m _{xmax}	14.5	17.7	21.1	25.7	28.4
m _{ymin}	-3.23	-3.41	-3.78	-4.27	-4.88
m _{ymax}	14.5	13.1	13.3	14.3	15.8
100a	45.5	67.4	87.6	103	117
ρ _{xr}	1.05	1.13	1.14	1.12	1.10
ρ _{yr}	1.05	0.89	0.75	0.62	0.52
U _{xr}	0.50	0.60	0.67	0.71	0.75
U _{yr}	0.50	0.40	0.33	0.29	0.25

2. Uniformly distributed force on line at $x=I_x$

 $K=p \cdot I_y, M=K/m, f_m=a \cdot p \cdot I_x^3/(E \cdot h^3)$

ε=l _y :l _x =	1.00	1.25	1.50	1.75	2.00
m _{xmin}	-2.22	-2.00	-2.01	-2.10	-2.26
m _{xmax}	7.72	7.71	7.24	7.86	8.20
m _{ymin}	-1.02	-1.13	-1.30	-1.50	-1.74
m _{ymax}	4.45	4.44	4.81	5.26	5.91
100a	118	176	228	270	305

3. Uniformly distributed force on line at $y=I_y$

 $K=p \cdot I_x, M=K/m, f_m=a \cdot p \cdot I_x^3/(E \cdot h^3)$

ε=l _y :l _x =	1.00	1.25	1.50	1.75	2.00
m _{xmin}	-1.02	-0.97	-0.95	-0.95	-0.97
m _{xmax}	4.45	4.66	5.17	5.39	5.66
m _{ymin}	-2.22	-2.80	-3.76	-5.16	-5.90
m _{ymax}	7.72	7.93	7.78	8.12	7.85
100a	118	142	156	163	167

4. Uniformly distributed moment m_R on line at x=I_x

 $K=m_R$, M=K/m, $f_m=a\cdot m_R\cdot I_x^2/(E\cdot h^3)$

ε=l _y :l _x =	1.00	1.25	1.50	1.75	2.00
m _{xmin}	-0.82	-0.81	-0.80	-0.78	-0.75
m _{xmax}	11.4	12.7	13.1	13.2	15.5
m ymin	-0.50	-0.48	-0.49	-0.50	-0.53
m _{ymax}	3.53	3.31	3.10	2.96	2.86
100a	174	258	333	397	426

5. Uniformly distributed moment m_R on line at $y=I_y$

 $K=m_{R}, M=K/m, f_{m}=a\cdot m_{R}\cdot I_{x}^{2}/(E\cdot h^{3})$

ε=l _y :l _x =	1.00	1.25	1.50	1.75	2.00
m _{xmin}	-0.50	-0.53	-0.56	-0.61	-0.65
m _{xmax}	3.53	3.72	3.80	3.95	4.14
m _{ymin}	-0.82	-0.85	-0.85	-0.86	-0.88
m _{ymax}	9.08	6.35	5.76	4.75	4.49
100a	174	173	166	160	153